Telegram Group & Telegram Channel
Chip Placement with Deep Reinforcement Learning [2020] - ещё одна демонстрация ограниченности нашего мозга

Люди нашли, в каких ситуациях RL отлично подходит - в решении некоторых "NP-задач" - когда вариантов решений очень много, при этом их можно осмысленно генерировать по частям. Также важно умение быстро проверять качество решения. Я уже писал про такие случаи в постах про AlphaTensor и AlphaDev.

Ради любопытства и улучшения интуиции давайте взглянем на ещё один пример, в котором это круто работает, а также подумаем о причинах успеха. Сегодняшняя "игра" - это проектирование чипов.

Мы начинаем с пустого "холста", и на нём один за одним располагаем элементы микросхемы, пока не расположим весь набор. После этого результат подвергается постобработке и, наконец, подсчёту награды - производится приблизительный расчёт того, насколько данная микросхема хороша, например, по суммарной длине проводов.

Пространством действий являются всевозможные позиции на холсте, на которые можно расположить текущий элемент. Состояние - это вся информация о микросхеме и уже расположенных элементах, графовая структура микросхемы, мета-фичи микросхемы и т.д. Награды нулевые на каждом шаге, кроме последнего, и там это просто мера качества результата, описанная выше.

В результате PPO, один из распространённых RL-алгоритмов, значимо обходит человека по итоговым метрикам. Почему же так получается? Заблюренные иллюстрации в статье дают на это очевидный ответ - наш интеллект не умеет решать всю задачу целиком, он вынужден разбивать её на небольшое количество кусков и затем решать каждый из них по отдельности, возможно, проделывая декомпозицию на нескольких уровнях. Итоговые микросхемы получаются у человека понятными и красивыми, тогда как алгоритм, который "на ты" с многомерными пространствами, сооружает адское месиво из тысячи компонентов, которое мы не в состоянии понять. Но оно лучше работает, а это самое главное.

@knowledge_accumulator



tg-me.com/knowledge_accumulator/116
Create:
Last Update:

Chip Placement with Deep Reinforcement Learning [2020] - ещё одна демонстрация ограниченности нашего мозга

Люди нашли, в каких ситуациях RL отлично подходит - в решении некоторых "NP-задач" - когда вариантов решений очень много, при этом их можно осмысленно генерировать по частям. Также важно умение быстро проверять качество решения. Я уже писал про такие случаи в постах про AlphaTensor и AlphaDev.

Ради любопытства и улучшения интуиции давайте взглянем на ещё один пример, в котором это круто работает, а также подумаем о причинах успеха. Сегодняшняя "игра" - это проектирование чипов.

Мы начинаем с пустого "холста", и на нём один за одним располагаем элементы микросхемы, пока не расположим весь набор. После этого результат подвергается постобработке и, наконец, подсчёту награды - производится приблизительный расчёт того, насколько данная микросхема хороша, например, по суммарной длине проводов.

Пространством действий являются всевозможные позиции на холсте, на которые можно расположить текущий элемент. Состояние - это вся информация о микросхеме и уже расположенных элементах, графовая структура микросхемы, мета-фичи микросхемы и т.д. Награды нулевые на каждом шаге, кроме последнего, и там это просто мера качества результата, описанная выше.

В результате PPO, один из распространённых RL-алгоритмов, значимо обходит человека по итоговым метрикам. Почему же так получается? Заблюренные иллюстрации в статье дают на это очевидный ответ - наш интеллект не умеет решать всю задачу целиком, он вынужден разбивать её на небольшое количество кусков и затем решать каждый из них по отдельности, возможно, проделывая декомпозицию на нескольких уровнях. Итоговые микросхемы получаются у человека понятными и красивыми, тогда как алгоритм, который "на ты" с многомерными пространствами, сооружает адское месиво из тысячи компонентов, которое мы не в состоянии понять. Но оно лучше работает, а это самое главное.

@knowledge_accumulator

BY Knowledge Accumulator




Share with your friend now:
tg-me.com/knowledge_accumulator/116

View MORE
Open in Telegram


Knowledge Accumulator Telegram | DID YOU KNOW?

Date: |

Telegram Auto-Delete Messages in Any Chat

Some messages aren’t supposed to last forever. There are some Telegram groups and conversations where it’s best if messages are automatically deleted in a day or a week. Here’s how to auto-delete messages in any Telegram chat. You can enable the auto-delete feature on a per-chat basis. It works for both one-on-one conversations and group chats. Previously, you needed to use the Secret Chat feature to automatically delete messages after a set time. At the time of writing, you can choose to automatically delete messages after a day or a week. Telegram starts the timer once they are sent, not after they are read. This won’t affect the messages that were sent before enabling the feature.

That strategy is the acquisition of a value-priced company by a growth company. Using the growth company's higher-priced stock for the acquisition can produce outsized revenue and earnings growth. Even better is the use of cash, particularly in a growth period when financial aggressiveness is accepted and even positively viewed.he key public rationale behind this strategy is synergy - the 1+1=3 view. In many cases, synergy does occur and is valuable. However, in other cases, particularly as the strategy gains popularity, it doesn't. Joining two different organizations, workforces and cultures is a challenge. Simply putting two separate organizations together necessarily creates disruptions and conflicts that can undermine both operations.

Knowledge Accumulator from tr


Telegram Knowledge Accumulator
FROM USA